AI for Radiology

Posted on Wed 25 September 2024 in research

The application of Artificial Intelligence (AI) in radiology improves diagnostic accuracy and efficiency by automating routine tasks, detecting subtle patterns, and analyzing large datasets from various types of medical images, including X-rays, CT scans, MRIs, and mammograms.


Continue reading

AI for Ophthalmology

Posted on Wed 25 September 2024 in research

The application of Artificial Intelligence (AI) in ophthalmology enhances diagnostic accuracy, reduces false positives, and enables personalized treatment plans by analyzing retinal images and identifying subtle changes indicative of various eye conditions.


Continue reading

Reproducible Research and Computing Platforms

Posted on Wed 25 September 2024 in research

Reproducible research not only leads to proper scientific conduct but also provides other researchers the access to build upon previous work. Most importantly, the person setting up a reproducible research project will quickly realize the immediate personal benefits: an organized and structured way of working. The person that most often has to reproduce your own analysis is your future self!


Continue reading

WIP: Vital Sign Analysis: Decompensation

Posted on Fri 20 September 2019 in research

Early and accurate prediction of decompensation (functional deterioration) in patients in domestic settings may help prevent deaths. Based on values that can be measured from portable devices such as heart rate, blood oxygen saturation, systolic blood pressure, temperature, and age, we study the prediction capability of machine learning algorithms to determine patient decompensation (death) in the next 24 hours.


Continue reading

Remote Photoplethysmography

Posted on Tue 20 November 2018 in research

We address the problem of reproducible research in remote photo-plethysmography (rPPG). Most of the work published in this domain is assessed on privately-owned databases, making it difficult to evaluate proposed algorithms in a standard and principled manner. As a consequence, we present a new, publicly available database containing a relatively large number of subjects recorded under two different lighting conditions. Also, three state-of-the-art rPPG algorithms from the literature were selected, implemented and released as open source free software. After a thorough, unbiased experimental evaluation in various settings, it is shown that none of the selected algorithms is precise enough to be used in a real-world scenario.


Continue reading

Computer Vision and Deep Learning for Biometrics

Posted on Tue 01 May 2018 in research

I have actively worked in computer vision and deep learning (mostly) associated to biometric recognition, with potential application to various other tasks. Contributions range from the collection of datasets, the exploration of different methods to address and assess biometric recognition vulnerabilities, domain adaptation, and remote photoplethysmography.


Continue reading