Is Computer-Aided Diag/Prognosis fair towards minorities? Current status and perspectives

Dr. André Anjos (anjos.ai)

February 10, 2022

Press Releases

How Can Artificial Intelligence Change Medical Imaging?

Artificial intelligence can improve medical imaging for screenings, precision medicine, and risk assessment.

Press Releases

How Can Artificial

Int: 2022 Healthcare trends will be driven by AI, Artific wearables and virtual medicine

precis

Press Releases

How Can Artificial

Int(2 This AI Can Predict Heart Attack Risk From an Eye Scan > The method detects subtle changes in affordable and widely available retinal scans

BY REBECCA SOHN 08 FEB 2022 4 MIN READ

For

the

Δnr

tele hea

mai

Tec

Press Releases

How Can Artificial Int(2 Artifici V precis Te a Enhance Patient Care and

Hospital Operations

Hardware optimization coupled with software development tools and application programming interfaces for artificial intelligence are enabling healthcare organizations to explore a range of emerging use cases for deep learning.

by Brian Eastwood 🔰

Brian Eastwood is a freelance writer with more than 15 years of experience covering healthcare IT, healthcare delivery, enterprise IT, consumer technology, IT leadership and higher education.

Scientific Papers¹

¹A short guide for medical professionals in the era of artificial intelligence, Mesko and Gorog, 2020, https://doi.org/10.1038/s41746-020-00333-z

Scientific Papers¹

Breakthroughs and performance are on the menu!

¹A short guide for medical professionals in the era of artificial intelligence, Mesko and Gorog, 2020, https://doi.org/10.1038/s41746-020-00333-z

Can it do the job?

Unfortunately, large-scale deployments of AI in healthcare require more than *just* performance. Among critical elements, one can cite:

- Fairness
- Accountability
- Transparence (Explainability, Interpretability)
- Safety

Can it do the job?

Unfortunately, large-scale deployments of AI in healthcare require more than *just* performance. Among critical elements, one can cite:

Fairness

- Accountability
- Transparence (Explainability, Interpretability)
- Safety

Multi-goal Approach

In systems taking decisions affecting human beings, one expects to check all those boxes, while still showing (super) human performance!

Fairness

No person may be discriminated against in particular on grounds of origin, race, gender, age, language, social position, way of life, religious, ideological, or political convictions, or because of a physical, mental or psychological disability.²

²Swiss constitution, Art. 8, al 2.

Fairness

No person may be discriminated against in particular on grounds of origin, race, gender, age, language, social position, way of life, religious, ideological, or political convictions, or because of a physical, mental or psychological disability.²

Fair AI System

- Independent of sensitive attributes
- Does not privilege any one demography
- Well calibrated w.r.t. different demographies

²Swiss constitution, Art. 8, al 2.

Disclaimer

In this "survey" talk I will:

- Assume one would like to build fair AI systems that maintain maximum utility (performance)
- Address technical issues of fairness related to AI
- Motivate it from a healthcare perspective

Examples of Unfair Treatment

There is a growing number of examples of unfair treatment from automatic algorithms, at scientific literature:

- Automated Experiments on Ad Privacy Settings, Datta and others, 2015 https://doi.org/10.1515/popets-2015-0007): Job search advertisement for highly paid positions are less likely to be presented to women;
- Discrimination in Online Ad Delivery: Google ads, black names and white names, racial discrimination, and click advertising, Sweeney, 2013 https://doi.org/10.1145/2460276.2460278: Searches for distinctively Black-sounding names are more likely to trigger ads for arrest records;
- Face Recognition Performance: Role of Demographic Information, Klare and others, 2012, https://doi.org/10.1109/TIFS.2012.2214212: Facial recognition systems increasingly used in law enforcement perform worse on recognizing faces of women and Black individuals;
- Semantics derived automatically from language corpora contain human-like biases, Caliskan and others, 2017 https://doi.org/10.1126/science.aal4230: Natural language processing algorithms encode language in gendered ways.

Case 1: Risk Prediction³

 Commercial tool to identify patients with complex health needs

Case 1: Risk Prediction³

- Commercial tool to identify patients with complex health needs
- Deployed nation-wide in the US

Case 1: Risk Prediction³

- Commercial tool to identify patients with complex health needs
- Deployed nation-wide in the US
- Algorithms input patient data (excludes self-reported race), maps to incurred costs

Perfectly calibrated!

Case 1: Risk Prediction³

- Commercial tool to identify patients with complex health needs
- Deployed nation-wide in the US
- Algorithms input patient data (excludes self-reported race), maps to incurred costs
- Issue: Incurred costs as a proxy for health needs

Not for chronic conditions

Case 2: CAD for melanoma detection⁴

 Tool to screen for melanoma on skin lesions

⁴Machine Learning and Health Care Disparities in Dermatology, Adamson and Smith, 2018, https://doi.org/10.1001/jamadermatol.2018.2348

Case 2: CAD for melanoma detection⁴

- Tool to screen for melanoma on skin lesions
- Large public dataset: International Skin Imaging Collaboration: Melanoma Project

⁴Machine Learning and Health Care Disparities in Dermatology, Adamson and Smith, 2018, https://doi.org/10.1001/jamadermatol.2018.2348

Case 2: CAD for melanoma detection⁴

- Tool to screen for melanoma on skin lesions
- Large public dataset: International Skin Imaging Collaboration: Melanoma Project
- Algorithms input images, output probability of melanoma

⁴Machine Learning and Health Care Disparities in Dermatology, Adamson and Smith, 2018, https://doi.org/10.1001/jamadermatol.2018.2348

Case 2: CAD for melanoma detection⁴

- Tool to screen for melanoma on skin lesions
- Large public dataset: International Skin Imaging Collaboration: Melanoma Project
- Algorithms input images, output probability of melanoma
- Issue: Most data issued from individuals with pale skin colour: unknown bias!

⁴Machine Learning and Health Care Disparities in Dermatology, Adamson and Smith, 2018, https://doi.org/10.1001/jamadermatol.2018.2348

Case 3: CAD for Chest Radiography⁵

- Tool to screen for radiological findings in CXR
- 4 Large public datasets, with meta information concerning patient gender, age, race, and insurance
- Algorithm inputs images, outputs probability of various radiological findings, or "no findings"

⁵Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations, Seyyed-Kalantari and others, 2021, https://doi.org/10.1038/s41591-021-01595-0

Case 3: CAD for Chest Radiography⁵

- Tool to screen for radiological findings in CXR
- 4 Large public datasets, with meta information concerning patient gender, age, race, and insurance
- Algorithm inputs images, outputs probability of various radiological findings, or "no findings"

Issue: Low representativity on training data

⁵Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations, Seyyed-Kalantari and others, 2021, https://doi.org/10.1038/s41591-021-01595-0

Sources of bias

Bias must be looked for in all parts of the design process of $algorithms^{6}$.

⁶Does "Al" stand for augmenting inequality in the era of covid-19 healthcare?, Leslie and others, 2021, http://dx.doi.org/10.1136/bmj.n304

Data Bias and Problem Design: Examples

- Data is issued only from those in a limited category (historical unfairness):
 - Access to healthcare
 - Linked with a social media profile, or smartphone ownership
- Data fails to include clinically relevant variables (case 1)
 - Outcomes (or their proxies) introduce bias
 - Biased predictor choice for sampled population
- Data has a sampling bias (cases 2 and 3)
 - Underrepresented segments of the population
 - Selection bias / Prejudice
- Power imbalances in agenda setting and problem formulation
- Data shifts (populations change with time)

Data Bias: Mitigation

At every iteration, ensure:

- Include and report population characteristics on your dataset
- Analyze predictor and outcome relationships to population characteristics – trim down feature set if possible
- If not done before, go through PROBAST (assessment of risk of bias) tool questionnaire⁷:
 - Were there a reasonable number of participants with the outcome?
 - Was the outcome defined and determined in a similar way for all participants? (e.g. different sensors for different populations?)
 - Were predictor assessments made without knowledge of outcome data?

etc.

- Re-think your data regularly: is it still unbiased?
- Avoid feedback loops: data that shapes algorithms that shapes data!

⁷PROBAST: A tool to assess the risk of bias and applicability of prediction model studies, Wolff and others, 2019, https://doi.org/10.7326/M18-1376

Algorithmic Bias: Sources

Here are some typical sources of bias:

- Naïve model development and evaluation (which does not consider population differences) very frequent
- Choice of best performing models based on limited data
- Selective reporting ("removing outliers") reshapes data biases
- Opaque algorithm decisions how confident am I the algorithm is unbiased?

No Fairness through Unawareness⁸

Simply suppress class memberships from input feature set

Probably, the oldest approach to "fairness"

⁸Fairness and machine learning, Limitations and Opportunities, Barocas and others, 2021, http://www.fairmlbook.org

No Fairness through Unawareness⁸

Simply suppress class memberships from input feature set

- Probably, the oldest approach to "fairness"
- Too naïve to work class membership is often correlated with other features!
- A highly accurate classifier for class membership can be built of slightly correlated features

Example: The feature "uses-internet" is slightly correlated to being male (source: ITU gender gap report, 2020)

⁸Fairness and machine learning, Limitations and Opportunities, Barocas and others, 2021, http://www.fairmlbook.org

Independence

Predicted scores (R) must be independent of class membership (A): $R \perp A$

 Some countries (US) require this for certains classes of products (e.g., loan risk assessment)

Independence

Predicted scores (R) must be independent of class membership (A): $R \perp A$

- Some countries (US) require this for certains classes of products (e.g., loan risk assessment)
- Typically, a weak assumption of fairness, as different demographies may actually have different probabilities of a "positive" outcome

Colour Blindness

Prevalence of Color Vision Deficiency in Boys, by Ethnicity

Separation (or Balance)

Making a mistake must be independent of class membership: $R \perp A | Y$

- Many (scientific) authors consider balancing mistakes both ways as a desirable feature in fair AI systems:
 - Equality of Opportunities: FNR must match between demographies
 - Equality of Odds: FPR must match between demographies
- Balancing systems often reduce their overall utility (performance)

Sufficiency (or Calibration by Group)

All demographic groups should be well-calibrated w.r.t. each other: $Y \perp A | R$

- I.e.: Scores must be comparable between classes, or the importance of one demography is reduced
- Sufficiency and utility are not contradictory

Sufficiency (or Calibration by Group)

All demographic groups should be well-calibrated w.r.t. each other: $Y \perp A | R$

- I.e.: Scores must be comparable between classes, or the importance of one demography is reduced
- Sufficiency and utility are not contradictory
- Sufficiency is often satisfied by default without the need for any explicit intervention.

Example from the US tool to measure patient risk:

Perfectly calibrated!

Relationships between criteria

Only one can survive⁹

Independence, Separation and Sufficiency are mutually exclusive

Independence	Separation	Sufficiency
$R \perp A$	$R \perp A Y$	$Y \perp A R$

R = predicted score; Y = label; A = sensitive attribute

- These criteria cannot be achieved simultaneously
- Independence vs. Sufficiency or Separation is relatively easy to demonstrate, and known for a while.
- Mutual exclusion between Sufficiency (calibration per group) and Separation was only recently demonstrated.
- Exception to this rule: $A \perp Y$

⁹Inherent Trade-Offs in the Fair Determination of Risk Scores, Kleinberg and others, 2017, https://doi.org/10.4230/LIPICS.ITCS.2017.43

Algorithmic Bias: Mitigation

Summary

- 1. Choose your de-biasing criterion
- 2. Choose where to affect your machine learning pipeline: preprocessing, training, post-processing
- 3. Apply de-biasing technique
- 4. Understand and report biases on your training, validation and test (hold-out) datasets
- **5.** Do not filter your dataset (e.g. exclude patients) without re-evaluating biases
- **6.** Favour more interpretable AI algorithms, or those that are explainable, or auditable
- **7.** During deployment, maintain a representative hold-out set to monitor algorithm performance through time.
- 8. Avoid "rush" to deploy, step back and evaluate bias before!

Conclusions

Is Computer-Aided Diagnosis fair towards minorities?

- It can be, subject to the criterion being chosen
- Deploying a fair system is a continuous process that needs to be well-anchored:
 - Companies selling technology need to be transparent about fairness of their algorithms
 - Institutions dealing with humans need to monitor shifts in population and algorithm performance:

Further Resources

 Interactive: Google PAIR has an intuitive explanation on bias: https://pair.withgoogle.com/explorables/ dataset-worldviews/

- Scientific Book: Fairness and machine learning, Limitations and Opportunities, Barocas and others, 2021, http://www.fairmlbook.org
- Bed time: Weapons of Math Destruction, Cathy O'Neil, 2016, ISBN 0553418815

andre.anjos@idiap.ch https://anjos.ai

Thank you for your attention!

Dr. André Anjos (anjos.ai)

February 10, 2022

